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DEPARTMENT OF CHEMISTRY
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

A previously described method for modeling the operation of ion-exchange
columns by numerical integration on a microcomputer is modified to include the
effect on elution curves of the finite rate of mass transport of solute ions between
the resin and the aqueous phase. This is done by means of a time constant
approach. The time constant is estimated as the smallest nonzero eigenvalue of a
suitably-chosen diffusion problem. Results are presented showing the effect of the
size of the time constant and the salt concentration in the cluting liquid on the
shapes of the elution curves.

INTRODUCTION

The use of ion exchangers in chemical technology and analytical
chemistry has increased enormously since the first synthetic ion-
exchange material was made by Harm and Riimpler in 1903 (). This was
greatly aided by the discovery that organic ion-exchange resins of quite
high capacity could be made (2); these also could be precisely tailored for
specific applications. Although ion exchangers have long been used in
columns, it has been noted that the modeling of the operation of an ion-
exchange column presents a formidable problem (3). Glueckauf has
presented one of the more detailed and rigorous treatments of ion-
exchange columns; he used a theoretical plate analysis (4-6). Helfferich
(3) and Samuelson (7) have presented detailed discussions of the
theoretical plate approach to modeling ion-exchange columns.
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In a recent paper we developed an extension of the theoretical plate
approach which, by the use of so-called upwind asymmetrical algorithms
for representing the advection term, greatly reduces the computer
memory and time requirements of these calculations (8). This model
assumed local equilibrium between the resin and the moving aqueous
phase, and the cubic equations arising from the equilibrium condition
for univalent-divalent ion exchange were solved exactly by Tartaglia’s
(Cardano’s) method.

Here we remove the assumption of local equilibrium with respect to
ion transport between the aqueous phase and the resin. We shall treat the
mass transfer kinetics by a time constant method used earlier in the
modeling of gas chromatography (9), activated carbon columns (/0), and
continuous-flow solvent sublation columns (/7). This permits one to
select Az in the numerical integration of the differential equations only
on the basis of the advection criterion Ar < Ax/v, where Ax is the
thickness of one of the compartments into which the column is
mathematically partitioned, and v is the linear velocity of the liquid. Use
of differential equations to model the mass transfer of solutes between the
aqueous phase and the ion-exchange resin requires that At < the least of
Ax/v and T, where t is a time constant associated with the mass transfer.
Since t may be much less than Ax/v, one may find that the size of Az
required is so small that computation time becomes excessive.

We estimate the time constant t as the reciprocal of the least positive
eigenvalue of a suitably chosen diffusion problem.

In the following we first examine the diffusion of ions into and out of a
resin bead in order to obtain an estimate for t. Then we model the
behavior of an ion-exchange column in which a divalent cation and a
univalent cation are exchanging. Lastly, we examine numerical results
showing how the displacement of a divalent cation by a high concentra-
tion of a univalent cation is affected by the time constant of the mass
transport and by the salt concentration in the eluting liquid.

ANALYSIS

Estimation of the Mass Transport Time Constant

First we derive the diffusion equation appropriate for the diffusion of
ions into (and out of) a spherical bead of ion-exchange resin. Then we
solve this equation and obtain its least positive eigenvalue, the reciprocal
of which we take as an estimate of the mass transfer time constant. Lastly,
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we include the effect of the quiescent aqueous boundary layer around the
bead, and derive the equation for calculating the eigenvalues of this
somewhat more realistic system.

We assume (with some trepidation) that the electrochemical potentials
of the two ions in the resin are given by the ideal expressions

Hna = Wy = pi + KT log, ¢, + ey (1)
Mca = Mo = p3 + KT log. ¢, + ey (2)

where ¢, = Na* ions per cm’® of resin
¢, = Ca®"* ions per cm® of resin
e = | electronic charge|, esu
y = electric potential, statvolts

The diffusion equations for the ions in the resin are then

de; _ 1
Jr  6nmr,

VeV,  i=1,2 3)

where (1/6my,) is to be regarded more as just a diffusion scale factor than
as a function of an admittedly ill-defined resin viscosity.
Poisson’s equation is

—4np _ —4n

vy =
V=D D

e(c, + 2¢,— S,) (4)

where p = charge density
D = effective dielectric constant
S, = number of (singly-charged) negative sites per cm® in the
resin
Note that imposing the electrical neutrality requirement,
¢+ 2¢, =8, &)
gives the result that

Viy = 0 (6)

a result which will be needed later.
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Substituting the expressions for the electrochemical potentials (Eqgs. 1
and 2) into Egs. (3) then yields

dc, 1 ( kT )
L= V-le, =—Ve, +ec,V
or 6mmr, € ¢ G eanvy 0
dc, 1 ( kT )
%= V-le,- =V % 8
3 Gnnm €2 = Ve + 2ec,Vy (8)
We define
kT
= Dir j = 1, 2 9
6nnr; ! ©)
and rewrite Eqgs. (7) and (8) as
—aacT’ = DV, + ka?‘(Vc, -Vy + ¢, Viy) (10)
dc 2eD
'_672_= D2V2C2+ sz (VCZ'V\V +C2V2\V) (11)

From the electrical neutrality requirement, Eq. (5), we obtain

Ocy _ _, 0
ot dt (12)
VCl = —'2ch (13)

and also note that, from Eq. (6), V*y in Egs. (10) and (11) can be dropped.
So

dcr _ 2 eD, .

3 D,\Vée, + T Ve, Vy (14)
602 - 2 2€D2 .
el D,Vé, + T Ve, - Vy (15)

Substituting Egs. (12) and (13) into Eq. (14) yields, on multiplying by
-1/2,

9¢y

6[‘ = ,V262 + EP—’VCZ-V\V ’ (16)

kT
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Equating Egs. (15) and (16) then gives

(DZ—DI) 2 €
22 Uy, = -V, V
D,—2D, = kT VY amn

Substituting this result into Eq. (16) and rearranging slightly then
yields

o . i oo 18
ot  2D,-D, (18)

Thus we see that the coupled diffusion of Na* and Ca’* in the resin
bead is equivalent to the diffusion of a single uncharged species.

We next calculate the mass transfer time constant for the case where
the aqueous boundary layer can be neglected. For convenience we drop
the subscripts used above, as they are no longer needed, and define

D,=D\D,/(2D,— D)) (19)

The diffusion equation for the spherical resin bead is
Q:JZ_D a(,.zgﬁ) (20)

and our boundary conditions are

c(0,2) is finite 2n
c(at) = Kco, (22)

where a = bead radius
Kc,, = concentration of Ca** in the resin which is in equilibrium

with a concentration ¢, in the bulk solution

The differential equation is solved in the usual way by separating the
variables. We set

c(r.t)y = R(r)- T(¢) (23)
which on substitution into Eq. (20) yields

T(t) = exp (— A1) (24)
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The change of dependent variable
R =u/r
converts Eq. (25) into

du | A
- + e =
dr* D, u=0

Solution of this equation then gives

u=A,+By, A=0
~*r

u = A, cos /-r+Bksm /

WILSON

(25)

(26)

27N

(28)

(29)

To avoid having c(r,t) singular at r = 0, we must set 4, and 4, = 0, so that

we obtain

c(r.t) = Kc, + Z By sin | —}\—r‘exp(—?\t)
x T Dr

(30)

as our general solution. The boundary condition at r =a Eq. (22),

requires that

sin _D}L,a=0

from which we infer that

3H

(32)

(33)
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from which we have the desired time constant,

(34)

We next turn to the case where the resin bead is surrounded by a
quiescent aqueous boundary layer through which diffusion must take
place. The diffusion equation is now

§_i - %. 5‘2; (rz %), r < a (Region T) (20)
a_i = Lr)i g; r? %—i—), a < r < b (Region I) (35)

The boundary conditions are as follows.

c(0,) # oo (36)
lim c(a —- 5,t) = lim Kc(a + 8,¢) (37)
30t §-20¥
dc dc
lim D,— (a = 8,;) = lim D, == (a — &.1) (38)
s-0t a §-»07 a
c(b,t) = ¢, (39)

In Region 1 (the resin), the solution to the differential equation is

=Y Bf sin | T’)‘-r exp (M) + Ke., (40)

A

where we have already used Eq. (36). In Region II (the aqueous boundary
layer), the solution is

c(r,t)— -—cos /D r+~—sm / exp( A + ¢, (41)
i

From Eq. (39) we obtain

[ A A,
C, cos le+Dksm —b—lb—-O (42)
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From Egq. (37) we obtain

B,K~'sin /Dila—Cxcos /I})‘l—a—DAsin /—D}‘—la=o (43)

And from Eq. (38) we obtain, after some manipulation,

B / - / /
AD, sin a-—a cos
+C —Ccos J‘—a-a —sin —~a
* D, D D,
. A A A
+DA[—sm /b—la+a /—0—7005 /Ea] =0 (44)

Equations (42), (43), and (44) constitute three lincar, homogeneous
equations for the constants B,, C,, and D,. Since we want nonzero values
for these, the determinant of the coefficients of the equations must
vanish. This gives Eq. (45) (on page 999) as the eigenvalue equation for
this system. Tt is readily seen that A = 0 is a root of Eq. (45), and intuitively
it is evident that Eq. (34) gives an upper bound to the least positive
eigenvalue for this system, so that we have

(46)
for this case. Apparently Eq. (45) must be solved numerically.

Modeling of Column Operation

We use here the model and notation employed in our earlier paper (8),
modified as indicated below. Any one of several algorithms can be used
to represent advective transport; four of these are

14
ot —Vw(cn—l - Cn) (47)

1 3
-5 (— L P 5«:,,) (48)
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1 7 3 3
(—gcn—2+§cn—l_§cn—§cn+l> (49)

1

1
le—ten) 60

=7 (_ —Cpat Cpm1 —
It was shown earlier (8) that Egs. (49) and (50) are particularly effective in
reducing numerical dispersion but have a tendency toward instability,
while Eq. (47) gives a great deal of numerical dispersion but is also quite
stable. It therefore proved advantageous to represent advection by a
linear combination of Eq. (47) and either Eq. (49) or Eq. (50), as shown
in

%Ctn = a+(Eq.47) + (1 — a) - (Eq. 49 or 50) (51

-V

In the runs presented below, a = 0.1. We shall develop all the equations
using Eq. (47) for advection for reasons of simplicity; then at the end we
shall replace it by Eq. (51).

In our earlier paper it was shown that the requirements of electrical
neutrality, mass balance, and local equilibrium give the following
relationships in the ith compartment of the column:

Cnai + 2Ccai = So (52)
My, = V,[Na*]; + Vienas (33)
mCa.i = Vw[Ca2+]i + VccCa.i (54)

+12

Ki _ [Na ]icCa,i (55)

[CaH]iC%\la.f

where ¢y, ; = Na* concentration in the resin, mol/L

Cea; = Ca®* concentration in the resin

Sp = molar concentration of singly-charged anionic sites in the
resin

[Na*]; = Na* concentration in the aqueous phase

[Ca?*]; = Ca*' concentration in the aqueous phase

Mina; = total moles of Na* in the ith compartment

Mc, ; = total moles of Ca’* in the ith compartment

V,, = volume of liquid phase in the ith compartment

V, = volume of resin phase in the ith compartment

K; = effective equilibrium constant (here assumed constant
throughout the column)
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Successive elimination then yields a cubic equation for c¢,; at local
equilibrium,

asc3Ca,f + azcéa,i +ace,ta,=0 (56)
where
ay = VwKimCa,iS(z) (57)
a = —V.KSy4mc,; + VS)) — (my,.; — V.Se)’ (58)
a, = 4V, K{mc,; + VSo) — Vi(my, ; — V,S))] (59)
a, = —4V.K, + V)V, (60)

The movements of Na* and Ca®" in the column are described by the
equations

idr;iNa’i = v([Na'],., — [Na']) (61)
%’Ca,z‘ = w([Ca™],_, — [Ca®*]) (62)

We let [Na*], and [Ca’*], be the influent concentrations of these ions.

At this point we depart from our previous local equilibrium treatment
to take into account the finite rate of mass transfer. Instead of integrating
only Egs. (61) and (62) forward in time and constantly imposing the
equilibrium condition given by Eq. (55), we adjoin the following two sets
of differential equations to Eqgs. (61) and (62):

8[Na'], _ v o .
=y (Na'l = Na']) (63)
3[Ca]; _ v 2 T 24y

o= g (ICa" ) — [Ca™)) (64)

These equations describe how [Na*]; and [Ca®'], would change if there

were no mass transport between the solution and the resin.

Our procedure then is this. Given the conditions in the column at time
t, we calculate new conditions at time 1 + At as follows. (We illustrate with
the simple Gauss formula for clarity—in actual fact a more complex
predictor-corrector method was used.)
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Miai(t + At) = Mg (1) + %Na,i(t) At (65)
Mme,(t + A1) = me, (1) + %";—Ca,i(t) - At (66)
[Na*]°¢ + A1) = [Na'],(¢) + @gﬁ (1) At (67)
[Ca?*]°(t + Ar) = [Ca*](t) + 8[Ca“], (1)~ At (68)

Equations (67) and (68) give the new aqueous concentrations
[Na*)Xz + Ar) and [Ca™])z + A?) in the absence of mass transport
between resin and solution. We then use my, (t + At) and me, {t + AD)
along with Eqs. (52)-(54) and (56) to calculate what the aqueous
concentrations would be if equilibrium were allowed to occur; call these
concentrations [Na*]i(t + Af) and [Ca™* iz + Af).

We then assume that the decay from [Na*]’ and [Ca®*]” toward [Na*]
and [Ca®*}* is exponential, with a time constant t. This gives the following
expressions for the actual aqueous concentrations at time ¢ + Az

[Na*}2 + Ar) = [Na*} + (INa*]; = [Na*1})- [1 = exp (~At/x)
(69)

[Ca**]P(z + Az) = [Ca®)] + ([Ca™] — [Ca™)}) - [1 — exp (—At/7)]
(70)

These concentrations are then used to calculate the concentrations of
Na* and Ca** in the resin from

cNa.i = (mNa.i - Vw[Na+]i)/Vs (71)
Ccai = (Mca; — Vo[Ca¥*])/V, (72)

Use of an exponential decay toward equilibrium in Egs. (69) and (70)
permits one to use a value of Ar which is limited only by the advection
criterion, Az <V, /v, independent of the speed of the mass transfer
process.

In the computations reported below we used a predictor-corrector
method (J2) instead of the simple Gauss formula used in Eqgs. (65)~(68).
The procedure is as follows.
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Starter
*(Ap) = dy
y*(At) = p(0) + At - E(O) (73)
Predictor
* - dy
y*(i + Ar) = y(t — Ar) + 2Ar - E(t) (74)
Corrector
*
= Arfdy dy ]
y(t + At) = y(1) + > [dt (t) + it (t + Ar) (75)

Also, the computer program was written such that any of the algorithms
(Egs. 47-51) could be selected to represent advection in Eqs. (61)-(64).
The computer program was written in GW BASIC, and compiled and
run on a Zenith 150 microcomputer with 320K of RAM and an 8088
microprocesser. The runs reported in the next section took about 30 min
each—the difference in running time between this program and the
program using the local equilibrium approximation was negligible.

RESULTS AND CONCLUSIONS

We next examine some results illustrating the effects of varying the
mass transfer rate constant and the NaCl concentration in the eluting
solution. In all cases we are considering the elution of a column nearly
saturated with Ca®* with relatively concentrated (3-7 M) NaCl solutions.
The volume of the column was 40 L in all runs; 20 L of which was solid
ion exchanger and 20 L of which was mobile aqueous phase. The ion-
exchange resin contained 3.0 mol/L of univalent anionic sites. The
column was assumed initially equilibrated with a very large volume of
solution having [Ca**] = 0.20 M, [Na’] = 0.05 M. The value of the
distribution coefficient K was set equal to 4. In all cases the column was
partitioned into 20 compartments, and the flow rate used was 1.0 L/min.
Ar was set equal to 0.1 min, and a in Eq. (51) was set equal to 0.1. Using
Eq. (49) in Eq. (51) produced results indistinguishable from those
obtained using Eq. (50) in Eq. (51).

Plots of effluent Ca** and Na* concentrations versus time are shown in
Figs. 1-4. In these runs the values of the mass transfer time constant t are
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3F moles/L
21
5 [(Ca**1 [Na']
S
51
2
[=]
|84
0 10 20 min 30 40 Sb
time

FIG. 1. Plots of effluent [Ca2*] and [Na*]. t = 0.1 min, [Na"] in eluting solution = 3.0 M;
other parameters as stated in the text.

3( moles/ L.

concentration

— 1 A 1 -
o 10 20 min 30 40 50
time
F1G. 2. Plots of effluent [Ca?*] and [Na*]. t = 20 min, [Na*} in eluting solution = 3.0 M:
other parameters given in the text.
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3r moles/L
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(&)
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time
FIG. 3. Plots of effluent [Ca’?*] and [Na™]. T = 50 min, [Na'}] in eluting solution = 3.0 M;
other parameters given in the text.

3r motes/L

concentration
—

- 1 1 -

1
0 10 20 min 30 40 50
time
FiG. 4. Plots of effluent [Ca?*] and {Na*]. t = 10.0 min, [Na*] in eluting solution = 3.0 M:
other parameters given in the text.
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2r moles/L

effluent [Ca*?]

1 1 1

0 lb 20 min 30 40 50

FIG. 5. Comparison of effluent [Ca*] curves for v = 0.1, 1, 2.0, 5.0, and 10 min; [Na*] in
eluting solution = 3.0 M; other parameters given in the text.

0.1, 2, 5, and 10 min, respectively. Increasing the time constant (by,
perhaps, increasing the resin bead size) is seen to have little effect upon
the position of the Ca* elution peak maximum, but to increase the extent
of tailing of this peak greatly. The increased breadth of the elution is also
shown by the increased width of the Na* front. The effects on the Ca®*
elution curve of increasing t are more readily compared in Fig. 5, in
which Ca?* elution curves for T = 0.1, 1, 2, 5, and 10 min are plotted.

The effects of increasing the NaCl concentration in the eluting solution
are shown in Figs. 6 (local equilibrium and t = 0.002 min, indistinguish-
able) and 7 (z = 5 min). In both cases it is seen that narrower elution
peaks result when the concentration of the displacing ion in the eluting
solution is increased.

In conclusion, we note the following points. First, the effects of the
finite rate of mass transport between the resin and the moving solution
are readily modeled by the time constant method described here. Second,
the use of asymmetrical upwind algorithms giving low numerical
dispersion is effective in this model; these reduce the number of
compartments into which the column must be partitioned and corre-
spondingly increase the maximum size of Ar which can be used in the
numerical integration. Third, the model is readily adapted for use with
microcomputers running compiled BASIC.

A diskette for MS-DOS computers with the BASICA source program
and the compiled program is available for $3.00 to cover the costs of
mailing and the diskette.
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ef fluent [Ca*?]

7
3rmoles/L
2 -
|k
1 I 1l
0 10 20min 30 40 50

time

FIG. 6. Efftuent curves for [Ca?*]. T = 0.002 min; [Na*] in eluting solution = 3.0, 5.0, and
7.0 M as indicated. Other parameters as stated in the text. These curves are superposed on

curves

effluent [Ca*?]

made with the assumption of local equilibrium with a different computer
program.
3r moles/L
2F
7

I -

i 1 A — 1
0] 10 20 min 30 40 50

time

FIG. 7. Effluent curves for [Ca?*]. T = 5.0 min; [Na*] in eluting solution = 3.0,5.0,and 7.0 M

as indicated. Other parameters given in the text.
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