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SEPARATION SCIENCE AND TECHNOLOGY, 21(10), pp. 991-1008, 1986 

Modeling of Ion-Exchange Column Operation. 
II. Mass Transport Kinetics 

DAVID J. WILSON 
DEPARTMENT OF CHEMISTRY 
VANDERBILT UNIVERSITY 
NASHVILLE. TENNESSEE 37235 

Abstract 

A previously described method for modeling the operation of ion-exchange 
columns by numerical integration on a microcomputer is modified to include the 
effect on elution curves of the finite rate of mass transport of solute ions between 
the resin and the aqueous phase. This is done by means of a time constant 
approach. The time constant is estimated as the smallest nonzero eigenvaluc of a 
suitably-chosen diffusion problem. Results are presented showing the effect of the 
size of the time constant and the salt concentration in the eluting liquid on the 
shapes of the elution curves. 

INTRODUCTION 

The use of ion exchangers in chemical technology and analytical 
chemistry has increased enormously since -the first synthetic ion- 
exchange material was made by Harm and Rumpler in 1903 ( I ) .  This was 
greatly aided by the discovery that organic ion-exchange resins of quite 
high capacity could be made (2); these also could be precisely tailored for 
specific applications. Although ion exchangers have long been used in 
columns, it has been noted that the modeling of the operation of an ion- 
exchange column presents a formidable problem (3). Glueckauf has 
presented one of the more detailed and rigorous treatments of ion- 
exchange columns; he used a theoretical plate analysis (4-6). Helfferich 
(3) and Samuelson (7) have presented detailed discussions of the 
theoretical plate approach to modeling ion-exchange columns. 
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992 WILSON 

In a recent paper we developed an extension of the theoretical plate 
approach which, by the use of so-called upwind asymmetrical algorithms 
for representing the advection term, greatly reduces the computer 
memory and time requirements of these calculations (8). This model 
assumed local equilibrium between the resin and the moving aqueous 
phase, and the cubic equations arising from the equilibrium condition 
for univalent-divalent ion exchange were solved exactly by Tartaglia’s 
(Cardano’s) method. 

Here we remove the assumption of local equilibrium with respect to 
ion transport between the aqueous phase and the resin. We shall treat the 
mass transfer kinetics by a time constant method used earlier in the 
modeling of gas chromatography (9), activated carbon columns (IO), and 
continuous-flow solvent sublation columns (IZ). This permits one to 
select Ar in the numerical integration of the differential equations only 
on the basis of the advection criterion At<Axlv ,  where Ax is the 
thickness of one of the compartments into which the column is 
mathematically partitioned, and v is the linear velocity of the liquid. Use 
of differential equations to model the mass transfer of solutes between the 
aqueous phase and the ion-exchange resin requires that At < the least of 
Ax/v and t, where t is a time constant associated with the mass transfer. 
Since t may be much less than AxIv,  one may find that the size of At 
required is so small that computation time becomes excessive. 

We estimate the time constant t as the reciprocal of the least positive 
eigenvalue of a suitably chosen diffusion problem. 

In the following we first examine the diffusion of ions into and out of a 
resin bead in order to obtain an estimate for t. Then we model the 
behavior of an ion-exchange column in which a divalent cation and a 
univalent cation are exchanging. Lastly, we examine numerical results 
showing how the displacement of a divalent cation by a high concentra- 
tion of a univalent cation is affected by the time constant of the mass 
transport and by the salt concentration in the eluting liquid. 

ANALYSIS 

Estimation of the Mass Transport Time Constant 

First we derive the diffusion equation appropriate for the diffusion of 
ions into (and out of) a spherical bead of ion-exchange resin. Then we 
solve this equation and obtain its least positive eigenvalue, the reciprocal 
of which we take as an estimate of the mass transfer time constant. Lastly, 
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MODELING OF ION-EXCHANGE COLUMN OPERATION g93 

we include the effect of the quiescent aqueous boundary layer around the 
bead, and derive the equation for calculating the eigenvalues of this 
somewhat more realistic system. 

We assume (with some trepidation) that the electrochemical potentials 
of the two ions in the resin are given by the ideal expressions 

where c, = Na’ ions per cm3 of resin 
c2 = Ca2+ ions per cm3 of resin 
e = 1 electronic charge 1, esu 
y~ = electric potential, statvolts 

The diffusion equations for the ions in the resin are then 

where (1/6rrqri) is to be regarded more as just a diffusion scale factor than 
as a function of an admittedly ill-defined resin viscosity. 

Poisson’s equation is 

- 4n e ( c ,  + 2c2 - So) VZyI = ~ -4np - 
D D (4) 

where p = charge density 
D = effective dielectric constant 
So = number of (singly-charged) negative sites per cm3 in the 

resin 

Note that imposing the electrical neutrality requirement, 

c ,  + 2c, = So 

gives the result that 

v’y = 0 

a result which will be needed later. 
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994 WILSON 

Substituting the expressions for the electrochemical potentials (Eqs. 1 
and 2) into Eqs. (3) then yields 

We define 

-_ kT - D ~ ,  i = 1,2 
6nqri 

and rewrite Eqs. (7) and (8) as 

-- d c l  - D,V2Cl + * ( V C , .  v\y + c,V2y) 
at kT 

2- ac - D,V2c2 + &!?L (Vc2 * V\y + c2V2\y) 
at kT 

From the electrical neutrality requirement, Eq. (5),  we obtain 

(9) 

vc ,  = -2vcz (13) 

and also note that, from Eq. (6), V2w in Eqs. (10) and (1 1) can be dropped. 
so 

I- d' - D,V2cl + eD Vcl  * vy! 

2= 

at kT 

at 

Substituting Eqs. (12) and (13) into Eq. (14) yields, on multiplying by 
- 1/2, 

eD 
at kT 
-- ac2 - D,V2C2 + vc2 - vyl 
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MODELING OF ION-EXCHANGE COLUMN OPERATION 995 

Equating Eqs. (15) and (16) then gives 

Substituting this result into Eq. (16) and rearranging slightly then 
yields 

Thus we see that the coupled diffusion of Na+ and Ca2+ in the resin 
bead is equivalent to the diffusion of a single uncharged species. 

We next calculate the mass transfer time constant for the case where 
the aqueous boundary layer can be neglected. For convenience we drop 
the subscripts used above, as they are no longer needed, and define 

The diffusion equation for the spherical resin bead is 

and our boundary conditions are 

c(0,t)  is finite 

c(a, t )  = K c ,  

where a = bead radius 
Kc, = concentration of Ca” in the resin which is in equilibrium 

with a concentration c, in the bulk solution 

The differential equation is solved in the usual way by separating the 
variables. We set 

c(r , t )  = R ( r )  1 T ( t )  (23) 

which on substitution into Eq. (20) yields 

T( t )  = exp ( - A t )  ( 2 4 )  
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and 

The change of dependent variable 

R = ulr 

converts Eq. (25) into 

d2u h - - + - u = o  
dr2 D,  

Solution of this equation then gives 

WILSON 

(25)  

To avoid having c(r,t) singular at r = 0, we must set A. and Ah = 0, so that 
we obtain 

as our general solution. The boundary condition at r = a, Eq. (22), 
requires that 

s i n E a  = o 

from which we infer that 

h r h , = D ,  - , n = 1 , 2 , .  ("a">' 
The least positive eigenvalue is 

h, = .,(:)' (33)  
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MODELING OF ION-EXCHANGE COLUMN OPERATION 997 

from which we have the desired time constant, 

We next turn to the case where the resin bead is surrounded by a 
quiescent aqueous boundary layer through which diffusion must take 
place. The diffusion equation is now 

-- ac - - - ( r 2 $ ) ,  D, a 
at r2 ar 

r<a(RegionI)  

a < r < 6 (Region 11) ac D, a _ -  --- (35) 

The boundary conditions are as follows. 

c(0,t) f CXJ (36) 

(37) lim c(a - 8 , t )  = lim Kc(a + 8,t) 
8+0+ 6-0+ 

ac ac lim D, - (a - 8,t) = lim D, -(a - 6, t )  
L O +  ar 6+0+ 

c(b,t) = c, (39) 

In Region I (the resin), the solution to the differential equation is 

where we have already used Eq. (36). In Region I1 (the aqueous boundary 
layer), the solution is 

c(r,t) = [ C . m s E r  + 4 s i n E r ]  r exp(-it) + c, (41) 
h r  

From Eq. (39) we obtain 

C,cos&b -k D,sin&b = 0 
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998 WILSON 

From Eq. (37) we obtain 

B,K-' sin &a - C,cos & a - D, sin &a = 0 (43) 

And from Eq. (38) we obtain, after some manipulation, 

Equations (42), (43), and (44) constitute three linear, homogeneous 
equations for the constants B,, C,, and D,. Since we want nonzero values 
for these, the determinant of the coefficients of the equations must 
vanish. This gives Eq. (45) (on page 999) as the eigenvalue equation for 
this system. It is readily seen that h = 0 is a root of Eq. (49, and intuitively 
it is evident that Eq. (34) gives an upper bound to the least positive 
eigenvalue for this system, so that we have 

a' 
t>- n2D, 

for this case. Apparently Eq. (45) must be solved numerically. 

Modeling of Column Operation 

We use here the model and notation employed in our earlier paper (S), 
modified as indicated below. Any one of several algorithms can be used 
to represent advective transport; four of these are 

dcn - v - v  - - - ( c n - ]  - c,) 
at v, (47) 
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It was shown earlier (8) that Eqs. (49) and (50) are particularly effective in 
reducing numerical dispersion but have a tendency toward instability, 
while Eq. (47) gives a great deal of numerical dispersion but is also quite 
stable. It therefore proved advantageous to represent advection by a 
linear combination of Eq. (47) and either Eq. (49) or Eq. (50), as shown 
in 

ac 
at 

- v L = a . ( E q . 4 7 ) +  (1 -a ) - (Eq.49or50)  

In the runs presented below, a = 0.1. We shall develop all the equations 
using Eq. (47) for advection for reasons of simplicity; then at the end we 
shall replace it by Eq. (51). 

In our earlier paper it was shown that the requirements of electrical 
neutrality, mass balance, and local equilibrium give the following 
relationships in the ith compartment of the column: 

where c ~ ~ , ~  = Na' concentration in the resin, mol/L 
c ~ ~ . ~  = Ca2+ concentration in the resin 
So = molar concentration of singly-charged anionic sites in the 

"a+], = Na' concentration in the aqueous phase 
[Ca2+]; = Ca2+ concentration in the aqueous phase 
mNa, = total moles of Na+ in the ith compartment 
mCa,, = total moles of Caz+ in the ith compartment 
Vw = volume of liquid phase in the ith compartment 
V, = volume of resin phase in the ith compartment 
Ki = effective equilibrium constant (here assumed constant 

resin 

throughout the column) 
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MODELING OF ION-EXCHANGE COLUMN OPERATION 1001 

Successive elimination then yields a cubic equation for cCa, at focal 
equilibrium, 

where 

The movements of Na+ and Ca2+ in the column are described by the 
equations 

d m  -Na,i = v([Na+],-, - "a'],) 
dt 

dm ---Ca,i = v((Ca2+j,_, - [Ca2+],) 
dt 

We let "a+]" and (Ca2+I0 be the influent concentrations of these ions. 
At this point we depart from our previous local equilibrium treatment 

to take into account the finite rate of mass transfer. Instead of integrating 
only Eqs. (61) and (62) forward in time and constantly imposing the 
equilibrium condition given by Eq. (55), we adjoin the following two sets 
of differential equations to Eqs. (61) and (62): 

-- - L([Na+],-, - "a'],) 
6t V W  

6[Caz+]; - v 
6t VW 

- -([ca2+],- ,  - [Ca"],) 

These equations describe how [Na+Ii and [Ca2+], would change if there 
were no mass transport between the solution and the resin. 

Our procedure then is this. Given the conditions in the column at time 
t, we calculate new conditions at timer + At as follows. (We illustrate with 
the simple Gauss formula for clarity-in actual fact a more complex 
predictor-corrector method was used.) 
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1002 WILSON 

( 6 5 )  
dm 
dt mN,,j(t + At) = mN,.;(t) + __ Na,i(t) At 

(66) 
dm 
dt 

mc,,i(t + At) = mc,,;(t) + __ Ca,i(t) * At 

6"a+l* 
6t 

6[Ca2+], 
6t 

[Na']P(t + At) = [Na+],(t) + ~ ( t )  - A t  

[Ca2+]P(t + At) = [Ca+],(t) + ( t )  - At 

Equations (67) and (68) give the new aqueous concentrations 
[Na+]?(t + At) and [Ca"];(t + At) in the absence of mass transport 
between resin and solution. We then use mNa.,(t + At) and mc,& + At) 
along with Eqs. (52)-(54) and (56) to calculate what the aqueous 
concentrations would be if equilibrium were allowed to occur; call these 
concentrations [Na+]:(t + At) and [Ca"'];(t + At). 

We then assume that the decay from "a+]' and [Ca2+]' toward (Na']' 
and [Ca"]' is exponential, with a time constant T. This gives the following 
expressions for the actual aqueous concentrations at time t + At: 

[Na+]?(t + At) = "a']; + ("a']: - [Na']?). [ I  - exp(-At/t)] 
(69) 

(70) 
[Ca2+]9(t + At) = ICa2']9 + ([Ca2+]F - [Ca2+]9) [ I  - exp (-At/r)) 

These concentrations are then used to calculate the concentrations of 
Na+ and Ca2' in the resin from 

Use of an exponential decay toward equilibrium in Eqs. (69) and (70) 
permits one to use a value of At which is limited only by the advection 
criterion, At << VJv, independent of the speed of the mass transfer 
process. 

In the computations reported below we used a predictor-corrector 
method (12) instead of the simple Gauss formula used in Eqs. (65)-(68). 
The procedure is as follows. 
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MODELING OF ION-EXCHANGE COLUMN OPERATION 

Starter 

y*(At )  = y ( 0 )  + At - dY (0) 
dt 

Predictor 

y*(r + At)  = y(r - At)  + 2At dt dY ( t )  

1003 

(73) 

(74) 

Corrector 

y ( t  + A t )  = r ( t )  + dY * ( t j  + - ( t  + At)  dt 

Also, the computer program was written such that any of the algorithms 
(Eqs. 47-51) could be selected to represent advection in Eqs. (61)-(64). 
The computer program was written in GW BASIC, and compiled and 
run on a Zenith 150 microcomputer with 320K of RAM and an 8088 
microprocesser. The runs reported in the next section took about 30 min 
each-the difference in running time between this program and the 
program using the local equilibrium approximation was negligible. 

RESULTS AND CONCLUSIONS 

We next examine some results illustrating the effects of varying the 
mass transfer rate constant and the NaCl concentration in the eluting 
solution. In all cases we are considering the elution of a column nearly 
saturated with Caz+ with relatively concentrated (3-7 M) NaCl solutions. 
The volume of the column was 40 L in all runs; 20 L of which was solid 
ion exchanger and 20 L of which was mobile aqueous phase. The ion- 
exchange resin contained 3.0 mol/L of univalent anionic sites. The 
column was assumed initially equilibrated with a very large volume of 
solution having [Ca"] = 0.20 M, "a'] = 0.05 M The value of the 
distribution coefficient K was set equal to 4. In all cases the column was 
partitioned into 20 compartments, and the flow rate used was 1.0 L/min. 
Ac was set equal to 0.1 min, and a in Eq. (51) was set equal to 0.1. Using 
Eq. (49) in Eq. (51) produced results indistinguishable from those 
obtained using Eq. (50) in Eq. (51). 

Plots of effluent Ca2+ and Na' concentrations versus time are shown in 
Figs. 1-4. In these runs the values of the mass transfer time constant T are 
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1004 WILSON 

time 
FIG. 1. Plots of effluent [Ca2+] and "a+]. T = 0.1 min, "a'] in eluting solution = 3.0 M; 

other parameters as stated in the text. 

c 
0 .- 
t z 
.I-. c 
0, 
V 
c 
0 
V 

FIG. 2. 
time 

Plots of emuent [Ca2+] and "a+]. T = 2.0 min, p a ' ]  in eluting solution = 3.0 
other parameters given in the text. 

M; 
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2 -  
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0 .- + 
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0 
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1005 

3 moles/L 1 

3 

2 

0 10 2 0 m i n  30 4 0  5 0  
time 

FIG. 4. Plots of effluent [Ca*+j and “a+]. t = 10.0 min, “a+] in eluting solution = 3.0 
other parameters given in the text. 

M; 

FIG. 3. Plots of effluent [Ca2+] and “a+]. T = 5.0 min, “at] in eluting solution = 3.0 M; 
other parameters given in the text. 
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0.1, 2, 5, and 10 min, respectively. Increasing the time constant (by, 
perhaps, increasing the resin bead size) is seen to have little effect upon 
the position of the Caz+ elution peak maximum, but to increase the extent 
of tailing of this peak greatly. The increased breadth of the elution is also 
shown by the increased width of the Na' front. The effects on the Ca2+ 
elution curve of increasing t are more readily compared in Fig. 5, in 
which Ca2+ elution curves for 'I: = 0.1, 1, 2, 5, and 10 min are plotted. 

The effects of increasing the NaCl concentration in the eluting solution 
are shown in Figs. 6 (local equilibrium and t = 0.002 min, indistinguish- 
able) and 7 (T = 5 min). In both cases it is seen that narrower elution 
peaks result when the concentration of the displacing ion in the eluting 
solution is increased. 

In conclusion, we note the following points. First, the effects of the 
finite rate of mass transport between the resin and the moving solution 
are readily modeled by the time constant method described here. Second, 
the use of asymmetrical upwind algorithms giving low numerical 
dispersion is effective in this model; these reduce the number of 
compartments into which the column must be partitioned and corre- 
spondingly increase the maximum size of At which can be used in the 
numerical integration. Third, the model is readily adapted for use with 
microcomputers running compiled BASIC. 

A diskette for MS-DOS computers with the BASICA source program 
and the compiled program is available for $3.00 to cover the costs of 
mailing and the diskette. 
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7 

1007 

0 10 20 min 30 40 50 

FIG. 6. Effluent curves for [Ca2+]. T = 0.002 min; “af] in eluting solution = 3.0, S.0, and 
7.0 M a s  indicated. Other parameters as stated in the text. These curves are superposed on 
curves made with the assumption of local equilibrium with a different computer 

program. 

time 

0 10 20 rnin 30 40 50 
time 

FIG. 7. Effluent curves for [Ca2+]. z: = 5.0 min; “a+] in eluting solution = 3.0,5.0, and 7.OM 
as indicated. Other parameters given in the text. 
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